
Copyright

by

Rahul Nandakumar

2024

1

The Thesis Committee for Rahul Nandakumar
certifies that this is the approved version of the following thesis:

Feature Engineering for Supervised Learning

SUPERVISING COMMITTEE:

Raghu Bollapragada, Supervisor

Deepayan Chakrabarti, Co-supervisor

2

Feature Engineering for Supervised Learning

by

Rahul Nandakumar

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

The University of Texas at Austin

August 2024

3

Dedication

Dedicated to my mother and father.

4

Epigraph

What starts here changes the world.

—University of Texas at Austin

5

Acknowledgments

I would like to express my deepest gratitude to all those who have supported

and guided me throughout the process of writing this thesis.

First and foremost, I wish to thank my advisor, Dr. Deepayan Chakrabarti,

for his unwavering support, expert guidance, and invaluable insights. His patience,

encouragement, and feedback were instrumental in the successful completion of this

research. I am profoundly grateful for his mentorship and dedication to my academic

growth.

I would also like to extend my gratitude to Dr. Raghu Bollapragada, for his

thoughtful comments, constructive criticisms, and suggestions, which significantly

enhanced the quality of this work.

I am thankful to University of Texas at Austin and the Operations Research

and Industrial Engineering program for providing the resources and a conducive envi-

ronment for my research. I would like to acknowledge the financial support received

from a McCombs Excellence Grant (2024) which made this research possible.

A special thanks to my colleagues and friends in the ORIE department for

their camaraderie, moral support, and for providing a stimulating and enjoyable en-

vironment in which to learn and grow.

6

Abstract

Feature Engineering for Supervised Learning

Rahul Nandakumar, M.S.E.
The University of Texas at Austin, 2024

SUPERVISORS: Raghu Bollapragada, Deepayan Chakrabarti

The main objective of this study is to investigate the possibility of gener-

ating extremely effective features when dealing with multicluster, multidimensional

datasets with low information features. We present the design and development of

a general-purpose, interpretable, and rectifiable continual learning algorithm. We in-

troduce Patch, an algorithm that identifies ideal binary features, termed “one-way

classifiers”. A one-way classifier predicts the class accurately when the feature is

active and remains non-specific when the feature is inactive. Patch finds these clas-

sifiers in a parallelizable manner, optimizing for reliability and preventing overfitting.

This concept is extended to residuals through our PatchAugment algorithm, which

improves the performance of any baseline model by focusing on poorly predicted data

points.

Our formalization of manufactured features as one-way classifiers distinguishes

our work from traditional embedding-based feature construction methods. Unlike

embeddings that require all components to work in unison, each feature created by

Patch is independently informative for a subset of the data, making it highly inter-

pretable and verifiable.

The contributions of this thesis are twofold: first, we introduce a robust al-

gorithm for automatic feature construction; second, we develop a novel continual

7

learning approach that leverages these features to enhance model performance. Ex-

periments on multiple real-world datasets demonstrate significant improvements in

AUC, validating the efficacy of our methods.

The structure of this thesis is as follows: Chapter 2 surveys related work.

Chapter 3 formulates the feature construction problem and presents our model. Chap-

ter 4 details our algorithms for feature construction and continual learning. Chapter

5 provides empirical validation, and Chapter 6 concludes the thesis.

8

Table of Contents

List of Tables . 10

List of Figures . 11

Chapter 1: Introduction . 12

1.1 Contributions and Organization . 13

Chapter 2: Literature Review . 15

Chapter 3: Problem Formulation . 18

3.1 Formal Problem Statement . 18

3.2 Proposed Method . 22

Chapter 4: Algorithm . 26

Chapter 5: Experiments . 32

Chapter 6: Conclusion . 34

6.1 Key Contributions . 34

6.2 Implications for Future Research . 35

Appendix A: Detailed Experimental Results 36

Glossary . 41

Works Cited . 42

Vita . 44

9

List of Tables

5.1 Dataset characteristics. 33

A.1 PatchAugment on CIFAR-10: The table shows the AUC scores ob-
tained by Gradient Boosting and a Linear SVM, with and without
PatchAugment. 36

A.2 PatchAugment on Street View House Numbers: The table shows the
AUC scores obtained by Gradient Boosting and a Linear SVM, with
and without PatchAugment. 36

A.3 PatchAugment on CelebA: The table shows the AUC scores ob-
tained by Gradient Boosting and a Linear SVM, with and without
PatchAugment. 39

A.4 PatchAugment on Protein: The table shows the AUC scores ob-
tained by Gradient Boosting and a Linear SVM, with and without
PatchAugment. 39

10

List of Figures

A.1 PatchAugment’s accuracy versus number of manufactured features
on CIFAR-10: Each plot shows the AUC for a binary one-versus-the-
rest classifier, using PatchAugment to augment Gradient Boosting
and a linear SVM. PatchAugment yields a consistent and significant
improvement in AUC. 37

A.2 PatchAugment’s accuracy versus number of manufactured features
on Street View House Numbers: Each plot shows the AUC for a binary
one-versus-the-rest classifier, using PatchAugment to augment Gra-
dient Boosting and a linear SVM. PatchAugment yields a consistent
and significant improvement in AUC. 38

A.3 PatchAugment’s accuracy versus number of manufactured features
on CelebA For Class Smiling and Class Pointy Nose: Each plot shows
the AUC for a binary one-versus-the-rest classifier, using PatchAug-
ment to augment Gradient Boosting and a linear SVM. PatchAug-
ment yields a consistent and significant improvement in AUC. 39

A.4 PatchAugment’s accuracy versus number of manufactured features
on Protein For Class 0,1,2: Each plot shows the AUC for a binary one-
versus-the-rest classifier, using PatchAugment to augment Gradient
Boosting and a linear SVM. PatchAugment yields a consistent and
significant improvement in AUC. 40

11

Chapter 1: Introduction

AI applications must continuously adapt to changing data distributions. The

simplest method for this involves periodically refreshing the entire pipeline, not just

by retraining machine learning (ML) models on new data, but also by updating the

operating points of these models, integrating ML scores with business logic, iden-

tifying edge cases, and fine-tuning the guardrails accordingly. This comprehensive

process is labor-intensive and expensive, making frequent updates impractical. This

challenge is where continual learning steps in, aiming to update models seamlessly as

new data arrives.

One straightforward approach to continual learning is fine-tuning existing

models with a few backpropagation steps. Recent research has focused on speed-

ing up this process and reducing the number of parameter updates. However, this

method is limited to models trained via backpropagation, thus excluding many widely

used models like gradient-boosted decision trees. Additionally, fine-tuning can intro-

duce unpredictable and opaque changes in the model’s decision boundary, potentially

creating new edge cases and increasing business risks. If data corruption is detected

post-fine-tuning, reversing its effects can be challenging, emphasizing the need for a

more robust solution:

Design a general-purpose, interpretable, and rectifiable continual learning algorithm.

Our approach involves continuously modeling the residuals of a periodically

trained baseline model. This flexibility allows for the use of any baseline model, in-

cluding decision trees and SVMs, as demonstrated empirically in the Experiments

Chapter. As new data arrives, we compute the residuals—the discrepancies between

actual class labels and predicted probabilities. These residuals are then modeled us-

ing a set of manufactured features, each representing an interpretable function of the

raw features. Our algorithm constructs these features in parallel, ensuring that each

12

feature’s quality can be independently verified. This independence allows for reassess-

ment and elimination of features in the event of data corruption, thus maintaining

the resilience of our residuals model.

The feature manufacturing algorithm is central to our method. We identify the

ideal binary feature as a ”one-way classifier.” A one-way classifier reliably predicts

the class of a data point when the feature is active but remains uncertain when

it is inactive. Essentially, a manufactured binary feature delineates regions of the

raw feature space where data points predominantly belong to a single class. Our

algorithm, termed Patch, efficiently discovers such one-way classifiers through a

parallelizable approach. This concept is further extended to residuals in an algorithm

we call PatchAugment.

Our approach to feature manufacturing as one-way classifiers marks a signif-

icant departure from traditional methods. Previous approaches often view manu-

factured features as complex combinations of raw features, where each component’s

utility hinges on the entire feature set. For instance, components of embeddings in

neural networks are intricate combinations of raw features and are useful only when

aggregated. In contrast, each feature produced by Patch functions as an independent

one-way classifier, verifiable in isolation. Each is specifically designed to be highly in-

formative for certain data subsets. Thus, while existing methods create features that

are broadly informative, Patch generates features that provide high informativeness

for specific data subsets.

1.1 Contributions and Organization

Our research contributes significantly to both automatic feature construction

and continual learning.

Formulation. We demonstrate that feature construction can be framed as a one-way

classification problem. Leveraging well-established classification techniques allows us

13

to apply classification tools to feature construction. Our formulation ensures that

each feature is interpretable as a simple classifier, with its accuracy independently

verifiable.

Algorithm for Feature Manufacturing. We introduce Patch, an algorithm de-

signed to identify one-way classifiers relevant to small data subsets. Patch employs

robust optimization to ensure reliable classifiers that mitigate overfitting. The algo-

rithm operates through a series of parallelizable iterations, enabling the simultaneous

generation of numerous features.

Model for Manufactured Features. Given that real-world datasets lack ground

truth for manufactured features, we develop a model where the ideal combinations

of raw features are known. Experiments on data simulated with this model confirm

that features generated by Patch effectively capture the ideal feature combinations

across various scenarios.

Algorithm for Continual Learning. We present PatchAugment, an algorithm

for continual learning compatible with any baseline model, including boosted trees.

PatchAugment identifies features that improve classification of residuals—data

points where the baseline model underperforms. Empirical results on 3 real-world

datasets show up to 9% improvement in AUC compared to boosted trees trained on

the entire dataset. This demonstrates that PatchAugment enhances model perfor-

mance even when the full dataset is available upfront.

In summary, our approach offers a pioneering solution to the complexities of

continual learning, ensuring robustness, interpretability, and adaptability in the face

of ever-changing data landscapes. By focusing on one-way classifiers and parallelizable

feature construction, we pave the way for more resilient and effective AI systems.

14

Chapter 2: Literature Review

Feature construction is a crucial step in machine learning where we either

generate an exhaustive set of new features, or modify existing ones by iteratively

adding new features that would improve the prediction accuracy. We understand

that the former deals with increased computational complexity, and a greater risk

of overfitting, whereas the latter is prone to information loss, and while extracted

features are interpretable in a mathematical sense, they may not have direct, intuitive

interpretations in the context of the problem domain. In the larger sense, the whole

process maybe time intensive.

In their work, Markovitch and Rosenstein (2002) propose the FICUS algorithm

, which is an iterative approach to apply beam search over a defined feature space

and constructs new features by applying constructor functions to the members of its

current feature set. The utility of these features are evaluated based on metrics like

information gain and mutual information.

The Cognito algorithm proposed by Khurana et al. (2016). considered a greedy

exploitation strategy to maximize the accuracy using various features constructed.

The selection is based on determining the best-performing models through incremen-

tal data allocation and on estimating the model performances based on upper bounds.

Fan et al. (2019). in their work proposed a framework to use a divide-and-

conquer approach instead of exhaustive enumeration. The features created using this

approach are assessed locally within specific sets of examples where errors are high

and the features made so far aren’t predicting well. While the above mentioned

frameworks are theoretically plausible, there doesn’t seem to exist an open source

library to use these approaches for practical data science use cases.

Python libraries like scikit-learn, featuretools, and tsfresh exist, but have draw-

backs with not being able to deal with large datasets, or being targeted towards a

15

specific ML task. To overcome this, Horn et al. (2020). created a Python library

called autofeat, which provides the AutoFeatRegression model. This model automat-

ically generates and selects additional non-linear input features given the original data

and then trains a linear regression model with these features. In a sense, this model

demonstrates how a high prediction accuracy can be attained while maintaining a

transparent model that produces verifiable outcomes as a foundation for business

decisions made by non-statisticians.

One of the primary challenges in continual learning is catastrophic forget-

ting, where a model trained sequentially on multiple tasks tends to forget previously

learned information when trained on new tasks. Techniques such as rehearsal (using

a memory buffer of past examples), regularization (penalizing changes to important

weights), and architectural approaches (dynamically expanding the network) are of-

ten employed to mitigate this issue. We also find that effectively managing memory

resources is critical in continual learning.

When learning new features, we want to allow knowledge of previous tasks

to be protected. Elastic weight consolidation, proposed by Kirkpatrick et al. (2017).

addresses the significant problem continual learning poses for neural networks. A

quadratic penalty was applied to the difference between the parameters for the new

task and those for the old task. This penalty was weighted using a diagonal matrix,

with weights proportional to the diagonal elements of the Fisher information matrix

evaluated for the old parameters on the old task. This approach has been shown to

support continual learning in challenging reinforcement learning scenarios, such as

Atari 2600 games.

In their work in Progress & compress: A scalable framework for continual

learning Schwarz et al. (2018), the ”progress” component involves using the EWC

to preserve knowledge from previously learned tasks by applying regularization to

important model parameters, while the ”compress” component employs a generative

model to summarize and store essential information from past tasks. This framework

16

enables scalable and efficient continual learning by mitigating the negative impact of

new tasks on previously acquired knowledge.

Memory Aware Synapse (MAS) proposed by Aljundi et al. (2018) identifies

and prioritizes the importance of model parameters for previously learned tasks by

calculating the sensitivity of the loss function to changes in these parameters. This

approach uses regularization to protect critical weights from modification when train-

ing on new tasks, thereby preserving valuable knowledge. The MAS method enhances

the model’s ability to maintain performance on old tasks while accommodating new

ones, offering a robust solution for continual learning scenarios where preserving past

knowledge is crucial.

Lopez-Paz and Ranzato (2017) proposed a Gradient based episodic memory

(GEM) for continual learning which stores a subset of examples from previous tasks

and leverages these examples during training on new tasks to constrain the updates

to the model’s parameters. This approach ensures that the gradient updates for new

tasks do not adversely affect the performance on previously learned tasks, effectively

preserving past knowledge while enabling the model to adapt to new data. GEM

offers a practical solution for continual learning by balancing the integration of new

information with the retention of previous learning.

17

Chapter 3: Problem Formulation

3.1 Formal Problem Statement

Our continual learning algorithm relies on the development of manufactured

features. Therefore, we concentrate on the task of generating interpretable features

from a set of raw features. To illustrate our approach, we start with a motivating

example. Subsequently, we formalize the feature construction problem. Lastly, we

introduce a model that allows for the identification of optimal manufactured features,

providing a benchmark for evaluating any feature construction algorithm.

Example 1 (Vehicles and Their Types). Consider a dataset of images of various ve-

hicles. The raw features of each image are represented by the pixel values. Several

classification tasks can be performed on this dataset. For instance, class labels might

differentiate between vehicles based on their type (e.g., cars vs. trucks), fuel type

(e.g., electric vs. gasoline), or size (e.g., compact vs. large).

The ideal manufactured features are those that are useful across any of these

classification tasks.

Intuitively, these features might correspond to vehicle categories such as body

style or fuel efficiency. Each vehicle category can be classified into different types

such as compact, sedan, or SUV, and into different fuel types like electric or hybrid.

Thus, each class (e.g., cars or electric vehicles) can be seen as a union of a subset of

these categories. A human can often identify a vehicle’s category or fuel type from

its raw features (the image pixels). Our goal is to replicate this identification process

using the class labels for a specific classification task.

Generalizing Example 1, suppose the data comprises various types of entities.

The ideal manufactured features would be binary indicators fk, where each fk equals

1 if a data point belongs to type k, and 0 otherwise. However, the training data only

18

provides raw features and class labels for each point, and the number of types may

be unknown. Thus, the problem can be articulated as follows:

Problem 1 (Manufactured Features). Develop binary features that correspond to the

underlying data types.

A seemingly direct approach might be to use clustering techniques. However,

clustering methods are generally effective for low-dimensional problems with a limited

number of clusters. In contrast, we are dealing with datasets that have thousands of

raw features and an unknown number of data types. Additionally, clustering methods

typically do not leverage class labels, which can provide valuable information. Data

points with different class labels are unlikely to belong to the same type. Therefore,

incorporating class labels can enhance performance beyond what standard clustering

algorithms can achieve.

Consider a data point x that belongs to type k, meaning fk(x) = 1. Given this

type, we can accurately predict its class label. For instance, an vehicle identified as

a SUV can be classified as electric. Conversely, if we know that fk(x) = 0, this alone

is insufficient to ascertain the class of x. For example, knowing only that an vehicle

is not a SUV does not inform us whether it is electric. Additional information is

required for class prediction. Therefore, the feature fk serves as a one-way classifier,

as defined below.

Definition 1 (One-way classifier). Consider dataset with points xj ∈ Rd and labels

yj ∈ {0, 1}. A one-way classifier is a function g : Rd → {0, 1} such that when

g(xj) = 1, then yj = 1. However, when g(xj) = 0, we cannot predict yj.

Problem 2 (One-way classifiers). Given a dataset (xj, yj) ∈ Rd × {0, 1} with j ∈ [n],

find all one-way classifiers.

Since ideal manufactured features are equivalent to one-way classifiers, Prob-

lem 1 can be reduced to Problem 2. To further simplify, we focus on constructing a

single one-way classifier at a time.

19

Problem 3 (One-Way Classifier Around a Seed). Given a seed point (xs, ys) of some

type k (where fk(x
s) = 1, with k unknown a priori), identify a one-way classifier that

recognizes all points of type k. Specifically, the classifier should differentiate between

the sets S0 and S1 defined as:

S1 := {x | fk(x) = 1}, S0 := {x | fk(x) = 0}, (3.1)

where the dependency of S1 and S0 on k is implied by the context.

If we solve Problem 3 for multiple seed points, this enables the construction

of all one-way classifiers. Consequently, Problem 3 is sufficient to address Problem 2.

Additionally, each instance of Problem 3 can be solved concurrently.

To tackle Problem 3, it is necessary to obtain sufficient samples from S0 and

S1. However, our information about these sets is incomplete. Specifically, we know

that S0 includes all points whose class differs from ys, while S1 only includes the seed

point xs. Formally,

S0 ⊇ H0 := {xj | yj ̸= ys}, S1 ⊃ H1 := {xs}. (3.2)

To construct an effective one-way classifier, additional samples from S1 are needed.

A straightforward approach would be to expand H1 by including other points near

xs based on pairwise distance or angle. However, this method often fails in high-

dimensional spaces.

We introduce a data generation model that allows us to identify the ideal

manufactured features. This model serves as a testbed for algorithms addressing

Problem 2. Additionally, our analysis of this model illustrates why straightforward

methods for expanding H1 are inadequate, providing motivation for the proposed

method discussed in the next Chapter

In our model, data points are distributed across K different types on a d-

dimensional unit sphere Sd−1, where both d and K are assumed to be large. Each

20

type k ∈ [K] is associated with a location on the sphere, denoted as zk ∈ Sd−1, and

a class label hk ∈ {0, 1}.

To generate the j-th data point, we first sample its type θj ∈ [K] from a multi-

nomial distribution. Next, we draw a point from a Gaussian distribution N(zθj , τ
2Id)

and project it onto Sd−1 to obtain xj. The class label of xj is then assigned based on

its type: yj = hθj .

The details of the model are specified below.

Definition 2. The model M(n, d,K, τ 2, p) generates n data points with features xj ∈

Sd−1 and class labels yj ∈ {0, 1} (where j ∈ [n]) as follows:

zk ∼ Haar(Sd−1) for all k ∈ [K]

hk ∼ Bernoulli(p) for all k ∈ [K]

θj ∼ Multinomial(1/K, . . . , 1/K) for all j ∈ [n]

x̃j | {θi}i∈[n], {zk}k∈[K] ∼ N(zθj , τ
2Id)

xj =
x̃j

∥x̃j∥2
yj | {θi}i∈[n] = hθj (3.3)

In this model, the class label yj of point j is solely dependent on its type θj.

Therefore, the ideal features must capture the information about {θj}. Specifically,

the ground truth binary features fk for k ∈ [K] are defined such that fk(xj) = 1 if

and only if θj = k.

When θj = k, the raw features xj are distributed around the central point zk.

Consequently, the ideal feature fk functions as a classifier that distinguishes zk from

all other centers {zℓ}ℓ̸=k.

Consider Problem 3 within the framework of the model described above. To

solve this problem, we need to expand Ŝ1 by including other points that are likely to

belong to the same type as the seed.

21

3.2 Proposed Method

We established that the ideal features are one-way classifiers. To train such

a classifier using a seed xs, it is essential to expand the training set with additional

points of the same type as the seed. However, relying on pairwise computations to

identify these points is ineffective. Therefore, an alternative approach is necessary.

Under our model (Definition 2), points of the same type are drawn from the

same distribution and thus should reside within a local neighborhood, provided the

distribution is not overly diffuse. We determine this local neighborhood using a robust

classifier, which leverages the overall data distribution and avoids the limitations

of pairwise metrics. We iteratively update the local neighborhoods and the robust

classifiers to construct the features.

We summarize our approach and discuss the construction of local neighbor-

hoods in detail. Subsequently, we present detailed algorithms for feature construction

and continual learning. We begin by training a robust classifier C to distinguish the

seed from all points whose class differs from that of the seed. This process defines

a region T that exclusively contains points from the seed’s class. Importantly, T is

localized around the seed, making it highly likely that points within T share the same

type as the seed (denoted as type k).

Under our model, the distribution of points of type k is centered around a

location zk. Therefore, the principal direction of the points within T approximates

zk. We use this direction to update the seed and iterate the process.

Each iteration shifts the seed towards the central location zk for type k. As

a result, T increasingly contains better samples of type-k points, which improves

the seed for the subsequent iteration. Consequently, after a few iterations, the seed

converges to zk. The resulting robust classifier C then serves as the ideal one-way

classifier.

The classifier C must distinguish between H1 = {xs} and the set H0 of all

points from a different class (as defined in Eq. 3.2). Since H1 contains only a single

22

point, the problem is underspecified. To address this, we consider a robust version of

the problem by replacing H1 with a distribution centered around xs.

Specifically, we define the distribution

D+ := ProjectSd−1(N(xs, σ2Id)), (3.4)

which is formed by adding Gaussian noise to xs and projecting the resulting points

onto the unit sphere.

The goal is for C to discriminate between the distribution D+ (positive class)

and the point set H0 (negative class).

Intuitively, C will identify a neighborhood T around xs that contains only

points of class ys. The parameter σ in D+ controls the degree of localization of T.

When σ is small, T is closer to xs and covers a smaller region of Sd−1. Thus, points

in T are more likely to belong to the seed’s type. However, if σ is too small, T may

include too few points. Cross-validation is used to select the optimal σ that achieves

a good balance.

To train C, we need to minimize the empirical loss over H0 plus the expected

loss over D+. The formula for the expected loss over D+ is not straightforward. We

first show that in high-dimensional settings, D+ can be approximated by a simpler

distribution D′. We then derive a closed-form formula for the expected loss over D′.

We now demonstrate how to eliminate the projection operator inD+ (Eq. 3.4).

Consider a classifier C parameterized by (β, c) ∈ R×Rd, where C(x) = 1β+cTx>0.

The local neighborhood T is then given by

T = {x ∈ Sd−1 | C(x) = C(xs)}.

To determine whether a point x belongs to T, we need only compute the sign

of cTx+β. Since the sign is invariant to scaling, we can restrict c to be of unit norm.

23

Recall that the classifier C(x) is expected to output one for x ∼ D+ and zero

for the point set H0. Hence, the expected misclassification loss of C in D+ is given

by

Ex∼D+C(x) = Ex∼D+ [1β+cTx>0].

Now, suppose the classifier’s loss on a point x is a function of cTx. For in-

stance, the misclassification loss is such a function, as C(x) = 1β+cTx>0. Theorem ??

shows that, in high-dimensional settings, the expected loss under D′ and D+ are ap-

proximately the same. Since D′ is easier to analyze because it is Gaussian, we can

use it in place of D+ for training the classifier. Specifically, in D′, the mean xs and

the standard deviation σ from D+ are scaled by a factor of 1/
√
1 + σ2d.

Loss Minimization over D′: To classify H0 against D′, we need to compute the

classifier’s loss. We use a weighted hinge loss, where the loss on a point with features

x ∈ Sd−1, class y ∈ {0, 1}, and weight w is given by

ℓ(y,x, w | ys, β, c) := w ·max
(
0, 1− (2 · 1y=ys − 1) · (β + cTx)

)
. (3.5)

The weight w can be set to 1 if the points are unweighted. The overall loss is given

by

1

|H0|
∑

(x,w)∈H0

ℓ(1− ys,x, w) + Ex∼D′ℓ(ys,x, 1), (3.6)

where we extend H0 to include weights for data points.

The expected loss over D′ can be approximated by the empirical loss over

samples drawn from D′. However, sampling introduces variability and increases com-

putational burden. Instead, we can directly compute the second term of Eq. 3.6 as

follows.

Theorem 3.1 (Adapting Theorem 1 of Chakrabarti and Fauber (2022)). Define

s = 1− β − cTxs

√
1 + σ2d

, (3.7)

t =
∥c∥2 · σ√
1 + σ2d

. (3.8)

24

Then, we have

Ex∼D′ℓ(ys,x, 1 | ys, β, c) = s · Φ
(s
t

)
+ t · ϕ

(s
t

)
, (3.9)

where ϕ(·) and Φ(·) denote the probability density function (pdf) and cumulative dis-

tribution function (cdf) of the standard normal distribution, respectively.

Thus, the expected loss over D′ has a closed-form expression. Furthermore,

the classifier’s overall loss is convex Chakrabarti and Fauber (2022). which means it

can be optimized by standard methods.

25

Chapter 4: Algorithm

We present two applications of our algorithm. First, we discuss how to generate

features for a given dataset. Then, we address the problem of creating features to

enhance the accuracy of a pre-existing classifier.

Algorithm 1 outlines the details of our approach. We process multiple seeds

{xi} in parallel. All seeds share the same class ys and therefore have the same H0.

In Step 5, we construct classifiers by optimizing Eq. 3.6 using Theorem ??.

For each seed xi, this yields a classifier Ci with weight vector ci and intercept βi.

We use the points selected by Ci to update the seed for the next iteration

(Step 11). After the final iteration, we return the classifiers {Ci}. These classifiers

can then be used to generate features for any test point.

To improve the accuracy of Patch, we introduce two additional steps. First,

Ci might not select enough points, meaning that |{j | yj = ys and Ci(xj) = 1}| could

be small. This limitation can affect the seed update accuracy (Step 11). To address

this, we adjust the intercept of Ci while keeping ci fixed (Step 16). This adjustment

maximizes the number of selected points while ensuring they primarily belong to the

class ys.

Second, we evaluate whether the classifiers are distinct from each other (Step 8).

If the classifiers become too similar (i.e., if they select overlapping subsets of points),

we terminate the iterations early to prevent redundant classifiers.

Patch can also be applied to enhance the accuracy of an existing classifier H.

We assume that H has been calibrated and pj(0) := H(xj) represents the

estimated probability that yj is 1. Given a one-way classifier C, we can adjust the

prediction to pj(γ) := (H + γC)(xj) := H(xj) + γC(xj) for some γ ∈ R. Our

objective is to minimize the prediction loss, which we choose to be the squared error

26

Algorithm 1 Automatically generate features as one-way classifiers

1: function Patch(class y(s) ∈ {0, 1}, training data P = {xj, yj, wj}, spread σ,
max iterations m, repetition threshold θ, hurdle h)

2: {x(s)
i } ← sample of high-weight points from class y(s) ▷ Seeds

3: Ŝ0 ← {(xj, wj) | yj ̸= y(s)} ▷ For large |Ŝ0|, we only use a sample
4: for counter = 1, . . . ,m do
5: Ci ← classify ProjectSd−1(N(x

(s)
i , σ2Id)) versus Ŝ0, for all seeds i

6: Ci ← Adjust(Ci, y
(s), P, h) for all seeds i

7: Yij ← Ci(xj) for all seeds i and training points j ▷ Yij ∈ {0, 1}
8: if top singular value of matrix Y > θ then
9: break ▷ Too many overlapping features
10: else
11: x

(s)
i ← top principal component of {wj ·xj | yj = y(s) and Ci(xj) = 1},

for all seeds i
12: end if
13: end for
14: return {Ci}
15: end function
16: function Adjust(C, y(s), P, hurdle h)
17: c← feature weights from C

18: J ← sort {j ∈ P} in descending order of xT
j c

19: rJk ←
∑

ℓ≤k wJℓ · (2 · 1yJℓ=y(s) − 1) for any Jk ∈ J

20: k⋆ ← max(50,maxk{rJk > h})
21: β⋆ ← −xT

J⋆
k
c

22: return classifier with intercept β⋆ and weights c
23: end function

27

Algorithm 2 Generate features that augment an existing classifier

1: function PatchAugment(training points P = {xj, yj}, existing classifier H,
Patch parameters (σ,m, θ, h))

2: Ptrain, Pvalid ← split P into training and validation sets
3: while AUC on Pvalid is improving do
4: H← De-trend(H, Ptrain, Pvalid) ▷ Identify global patterns
5: wj ← |yj −H(xj)| ▷ Set weights based on H’s errors
6: Select y(s) ∈ {0, 1} randomly
7: {Ci} ← Patch(y(s), {xj}, {wj}, σ,m, θ) ▷ Identify local patterns
8: C′

i ← SmoothC(Ci, y
(s), Ptrain) for each Ci ▷ Binary to real-valued

features
9: H← Update(H, {C′

i}, Pvalid)
10: end while
11: return H

12: end function
13: function De-trend(H, Ptrain, Pvalid)
14: β, c← Elastic Net regression to predict {yj −H(xj)} using {xj}
15: Ctrend ← classifier with feature weights c and intercept β
16: C′

trend ← SmoothC(Ctrend, 1, Ptrain)
17: H← Update(H,C′

trend, Pvalid)
18: return H

19: end function
20: function SmoothC(C, y(s), Ptrain)
21: β, c← intercept and feature weights from C

22: J ← sort {j ∈ Ptrain | β + xT
j c > 0} in descending order of xT

j c

23: rJk ←
(∑

ℓ≤k wJℓ · (2 · 1yJℓ=y(s) − 1)
)
/
(∑

ℓ≤k 1
)
for any Jk ∈ J

24: hi← argmaxk≥min(50,|J |) rJk
25: lo← last element of J
26: C′(x) :=

(
max

(
0,min

(
1, (x−xlo)

T c
(xhi−xlo)T c

)))
· (rhi − rlo) ▷ C′ : Sd−1 → R

27: return C′

28: end function
29: function Update(H, {C′

i}, Pvalid)
30: γ⋆ ← argmaxγ AUC({(H + γ ·

∑
Ci)(xj), yj}j∈Pvalid

)
31: return H + γ⋆ ·

∑
Ci

32: end function

28

ℓSE(pj | yj) := (pj(γ)− yj)
2.

For small γ, the change in loss is approximately given by

ℓSE(pj(γ) | yj)− ℓSE(pj(0) | yj) ≈ ℓ′SE(pj(0) | yj) · γ · C(xj)

= −2γ · (yj −H(xj)) · C(xj)

= −2γ · (2yj − 1)︸ ︷︷ ︸
∈{−1,1}

· |yj −H(xj)|︸ ︷︷ ︸
wj

·C(xj).

Here, C(xj) = 1 when the feature is “on” for xj, and 0 otherwise. Thus, the

loss only changes for points selected by C. If γ > 0, the loss decreases for points

belonging to the positive class and increases otherwise. Therefore, to construct C

using Patch, we should focus on points with high wj, and choose γ > 0 if the seed

ys = 1, or γ < 0 if ys = 0.

Algorithm 2 outlines the details of this approach. We first calculate the weights

wj for each data point (step 5) and use them to build the one-way classifiers {Ci}

(step 7).

To update H, we need to determine a γi for each Ci. Directly searching for a

γi for each classifier may lead to overfitting. Instead, we combine all Ci into a single

feature and find the optimal γ for this combined feature. Specifically, we first convert

each binary feature Ci into a real-valued feature C′
i (step 20). Intuitively, a data

point x is more likely to belong to the seed’s class the farther it is from the decision

boundary. C′
i represents this probability via a piecewise linear function. We then use∑

i C
′
i as a single new feature and find the optimal γ⋆ for this feature (steps 9 and 30).

Finally, we update H using the optimal γ⋆.

Algorithm 2 also includes an additional optimization. While Patch identifies

local patterns around seed points, it might miss global patterns that affect the entire

dataset. Since we use squared error as our loss function, we use ridge regression to

capture these global patterns (step 13). These global patterns are then used to update

H in the same manner as the local patterns.

29

Matching the desired properties. A feature generation algorithm should satisfy

the following properties:

• Parallelizable: The algorithm should be capable of generating multiple features

simultaneously. To achieve this, the measurement of a feature’s utility should

be independent of other features being generated in parallel.

• Checkable: To validate the accuracy of the generated features, they should be

compared against ground truth features. Ideally, these ground truth features

should be “optimal” combinations of the raw features available in the dataset.

Although there is no universally accepted notion of optimality for this problem,

a checkable feature generation algorithm should be tested against a synthetic

data distribution with well-defined ground truth features, which provides intu-

itive benchmarks for evaluating the algorithm’s performance. This also implies

that the generated features should be interpretable within this data distribution.

• Appropriate for high-dimensional problems: The algorithm should be designed

to generate useful features through non-linear combinations of existing features,

especially when dealing with high-dimensional datasets where raw features are

numerous, such as individual pixels in an image.

• Scalable: In practical scenarios, the number of features required is often un-

known. Therefore, the algorithm should not necessitate prior knowledge of the

number of features and should be scalable to handle large numbers of features

efficiently.

Both Patch and PatchAugment are designed to search for features in par-

allel. There is no restriction on the number of seeds or the number of features, making

our approach scalable to large-scale feature generation problems. Moreover, our al-

gorithms are tailored for high-dimensional settings, adhering to the model specified

in Eq. 3.3. Under this model, the ground-truth features correspond to the hidden

30

types of the data points. Consequently, our algorithms are checkable, as we can

assess the accuracy of feature generation using this model, as demonstrated in the

experiments. In summary, our algorithms meet all the desired properties for effective

feature generation.

31

Chapter 5: Experiments

We conduct experiments to address two key questions:

1. Accuracy of Features Generated by Patch: We aim to verify whether the

features generated by Patch accurately capture the underlying data structure

and are aligned with the ground truth features.

2. Effectiveness of PatchAugment in Enhancing Existing Classifiers: We

assess whether PatchAugment improves the performance of pre-existing clas-

sifiers by incorporating the features it generates.

To answer these questions, we perform experiments on both simulated and real-

world datasets. Specifically, we use 4 real-world datasets to validate the effectiveness

of our methods.

We performed the experiments by first splitting the data into training and

testing sets. Specifically, the dataset was divided such that 70% of the data was used

for training and 30% for testing. To ensure the robustness of our model, we further

split the training data into actual training and validation subsets. This was achieved

by creating a validation set with a fraction of the original training data, where the

fraction size was determined dynamically to balance the dataset.

For each class, a baseline model was initially trained using Gradient Boosting

and Support Vector Machine. This step involved evaluating the model performance

on the training data. Subsequently, we applied PatchAugment, specifically on the

validation subset. PatchAugment was tested with various hyperparameter settings

to optimize the model’s performance. Each combination of hyperparameters was

evaluated by training the model and assessing its performance on the validation set.

The metric used for evaluation was the Area Under the Curve (AUC) score.

32

After obtaining results from the initial tuning, we selected the best hyper-

parameter values based on their AUC performance on the validation set. The best

values were determined by sorting the validation results and choosing the parameters

that yielded the highest AUC scores.

With the best hyperparameters identified, we conducted a final set of experi-

ments. This involved retraining the model with the optimal parameters and evaluat-

ing its performance on the test set.

Dataset Type #classes #raw features #training points
CIFAR-10 Image 10 1024 35000
CELEB-A Image 2 4096 141819
SVHN Image 10 3072 69502
Protein Sparse matrix 3 357 12436

Table 5.1: Dataset characteristics.

Our experiments confirm that Patch accurately generates features that align

with the ground truth, and PatchAugment effectively boosts the performance of

existing classifiers. Detailed results and analysis are provided below.

33

Chapter 6: Conclusion

We present a novel approach to feature engineering for supervised learning,

focusing on the development and validation of the Patch algorithm and its extension,

PatchAugment. The primary contributions of this work are twofold:

1. Automatic Feature Construction: We introduced Patch, an algorithm

that constructs highly interpretable and verifiable features termed ”one-way

classifiers.” These features are designed to predict the class accurately when

active, enhancing the model’s interpretability and reliability.

2. Continual Learning Enhancement: Through the PatchAugment algo-

rithm, we extended the utility of Patch to residual learning. This approach it-

eratively improves baseline models by focusing on poorly predicted data points,

thereby boosting overall performance and resilience.

6.1 Key Contributions

We demonstrate the effectiveness of these methods through extensive experi-

mentation on multiple real-world datasets, showing significant improvements in AUC

scores. The main contributions can be summarized as follows:

1. Robust Algorithm for Feature Manufacturing: Patch identifies reliable one-

way classifiers using a parallelizable and robust optimization approach. This

method prevents overfitting and ensures each feature’s quality is independently

verifiable.

2. Innovative Approach to Residual Learning: PatchAugment leverages manu-

factured features to model residuals, maintaining the resilience and accuracy of

the predictive model even in the presence of data corruption.

34

6.2 Implications for Future Research

The findings of this thesis open several avenues for future research:

1. Scalability and Efficiency: Further exploration into the scalability of Patch

and PatchAugment for larger and more complex datasets could enhance their

applicability in real-world scenarios.

2. Integration with Other Learning Algorithms: Investigating the integration of

Patch with various other machine learning algorithms could provide deeper

insights into its versatility and robustness.

3. Extended Applications: Applying the concepts of one-way classifiers and resid-

ual learning to other domains, such as natural language processing or image

recognition, could yield promising results and broaden the scope of this re-

search.

By framing feature construction as a one-way classification problem and introducing

robust algorithms to implement this approach, we have shown that it is possible to

create highly informative and interpretable features that significantly enhance model

performance. The success of Patch and PatchAugment in various experimental

settings underscores the potential of these methods to transform how features are

engineered and utilized in machine learning models. Future research building on

these foundations can further refine and expand these techniques, contributing to the

advancement of the field.

35

Appendix A: Detailed Experimental Results

Class GB GB+PatchAugment SVM SVM+PatchAugment
Airplane 0.7814 0.8237 ± 0.0057 0.6769 0.7974 ± 0.0067

Automobile 0.8316 0.87146 ± 0.0020 0.7523 0.8421 ± 0.0146
Bird 0.7257 0.7740 ± 0.0018 0.6362 0.7578 ± 0.0083
Cat 0.6987 0.7453 ± 0.0022 0.6033 0.7247 ± 0.0010
Deer 0.7046 0.7393 ± 0.0031 0.6514 0.73435 ± 0.0030
Dog 0.7428 0.7955 ± 0.0024 0.6658 0.7627 ± 0.01183
Frog 0.7607 0.80015 ± 0.0040 0.6548 0.7856 ± 0.0086
Horse 0.7818 0.8177 ± 0.0096 0.6373 0.7925 ± 0.0023
Ship 0.8232 0.8552 ± 0.0011 0.7510 0.8289 ± 0.0040
Truck 0.8467 0.8646 ± 0.0024 0.7893 0.8506 ± 0.0029

Table A.1: PatchAugment on CIFAR-10: The table shows the AUC scores ob-
tained by Gradient Boosting and a Linear SVM, with and without PatchAugment.

Class GB GB+PatchAugment SVM SVM+PatchAugment
1 0.8977 0.9398 ± 0.0018 0.6280 0.9406 ± 0.0016
2 0.8837 0.9407 ± 0.0005 0.6041 0.9113 ± 0.0065
3 0.8151 0.8862 ± 0.0029 0.5600 0.8560 ± 0.0168
4 0.9031 0.9469 ± 0.0006 0.6124 0.9372 ± 0.0024
5 0.8428 0.9130 ± 0.0027 0.5804 0.8832 ± 0.0087
6 0.8274 0.8834 ± 0.0026 0.5790 0.8116 ± 0.0054
7 0.8661 0.9340 ± 0.0016 0.6036 0.9290 ± 0.0015
8 0.7873 0.8575 ± 0.0010 0.5899 0.8109 ± 0.0021
9 0.8182 0.9002 ± 0.0026 0.5924 0.8847 ± 0.0140
10 0.8407 0.9056 ± 0.0031 0.6474 0.9054 ± 0.0039

Table A.2: PatchAugment on Street View House Numbers: The table shows the
AUC scores obtained by Gradient Boosting and a Linear SVM, with and without
PatchAugment.

36

(a) Class Airplane (b) Class Automobile (c) Class Bird

(d) Class Cat (e) Class Deer (f) Class Dog

(g) Class Frog (h) Class Horse (i) Class Ship

(j) Class Trunk

Figure A.1: PatchAugment’s accuracy versus number of manufactured features on
CIFAR-10: Each plot shows the AUC for a binary one-versus-the-rest classifier, using
PatchAugment to augment Gradient Boosting and a linear SVM. PatchAugment
yields a consistent and significant improvement in AUC.

37

(a) Class 1 (b) Class 2 (c) Class 3

(d) Class 4 (e) Class 5 (f) Class 6

(g) Class 7 (h) Class 8 (i) Class 9

(j) Class 10

Figure A.2: PatchAugment’s accuracy versus number of manufactured features on
Street View House Numbers: Each plot shows the AUC for a binary one-versus-the-
rest classifier, using PatchAugment to augment Gradient Boosting and a linear
SVM. PatchAugment yields a consistent and significant improvement in AUC.

38

Class GB GB+PatchAugment SVM SVM+PatchAugment
Smiling 0.9552 0.9617 ± 0.0001 0.9590 0.9591 ± 0.0000

Pointy Nose 0.7847 0.7945 ± 0.00042 0.7773 0.7852 ± 0.0005

Table A.3: PatchAugment on CelebA: The table shows the AUC scores obtained
by Gradient Boosting and a Linear SVM, with and without PatchAugment.

Class GB GB+PatchAugment SVM SVM+PatchAugment
0 0.8042 0.8076 ± 0.0046 0.7973 0.7858 ± 0.0017
1 0.8098 0.8311 ± 0.0012 0.8093 0.8327 ± 0.0005
2 0.8240 0.8609 ± 0.0013 0.8294 0.8486 ± 0.0082

Table A.4: PatchAugment on Protein: The table shows the AUC scores obtained
by Gradient Boosting and a Linear SVM, with and without PatchAugment.

(a) Class Smiling (b) Class Pointy Nose

Figure A.3: PatchAugment’s accuracy versus number of manufactured features on
CelebA For Class Smiling and Class Pointy Nose: Each plot shows the AUC for
a binary one-versus-the-rest classifier, using PatchAugment to augment Gradient
Boosting and a linear SVM. PatchAugment yields a consistent and significant
improvement in AUC.

39

(a) Class 0 (b) Class 1 (c) Class 2

Figure A.4: PatchAugment’s accuracy versus number of manufactured features on
Protein For Class 0,1,2: Each plot shows the AUC for a binary one-versus-the-rest
classifier, using PatchAugment to augment Gradient Boosting and a linear SVM.
PatchAugment yields a consistent and significant improvement in AUC.

40

Glossary

Rahul Nandakumar A hard-working graduate student, nearing the end of this

chapter of your education!

Master of Science Rahul Nandakumar is about to earn this. Congratulations!

41

Works Cited

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and

Tinne Tuytelaars. Memory aware synapses: Learning what (not) to forget. In

Proceedings of the European conference on computer vision (ECCV), pages 139–

154, 2018.

Deepayan Chakrabarti and Benjamin Fauber. Robust High-Dimensional Classi-

fication From Few Positive Examples. In Proceedings of the Thirty-First Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 1952–1958, July

2022.

Cheng Fan, Yongjun Sun, Yang Zhao, Mengjie Song, and Jiayuan Wang. Deep

learning-based feature engineering methods for improved building energy predic-

tion. Applied energy, 240:35–45, 2019.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library

for automated feature engineering and selection. InMachine Learning and Knowl-

edge Discovery in Databases: International Workshops of ECML PKDD 2019,

Würzburg, Germany, September 16–20, 2019, Proceedings, Part I, pages 111–120.

Springer, 2020.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthas-

rathy. Cognito: Automated feature engineering for supervised learning. In 2016

IEEE 16th international conference on data mining workshops (ICDMW), pages

1304–1307. IEEE, 2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

42

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for con-

tinual learning. Advances in neural information processing systems, 30, 2017.

Shaul Markovitch and Dan Rosenstein. Feature generation using general con-

structor functions. Machine Learning, 49:59–98, 2002.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-

Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress &

compress: A scalable framework for continual learning. In International confer-

ence on machine learning, pages 4528–4537. PMLR, 2018.

43

Vita

Rahul Nandakumar is going to graduate soon!

Address: rahul.nandakumar@utexas.edu

This thesis was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

44

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Contributions and Organization

	Chapter 2: Literature Review
	Chapter 3: Problem Formulation
	Formal Problem Statement
	Proposed Method

	Chapter 4: Algorithm
	Chapter 5: Experiments
	Chapter 6: Conclusion
	Key Contributions
	Implications for Future Research

	Appendix A: Detailed Experimental Results
	Glossary
	Works Cited
	Vita

